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1.0 SUMMARY 

 
The objective of this effort was to develop deep lifelong learning methods that can successfully 
handle sequential decision making in complex dynamic environments, focusing on multi-agent 
intelligence, surveillance, and reconnaissance (ISR) scenarios.  We developed a novel architecture 
for deep convolutional neural networks that supports lifelong learning via deconvolutional 
factorization (DF-CNN), explored a combination of policy distillation via Distral and Sobolev 
training, and developed a hybrid controller for applying deep learning to ISR agents.  Our 
approaches were evaluated on standard benchmark deep learning datasets, the DOOM 
environment, and on ISR scenarios in the ATE3 simulation environment. 
 
Our primary contribution is the Deconvolutional Factorized Convolutional Neural Network (DF-
CNN).  The DF-CNN framework adapts the standard convolutional neural network (CNN) 
framework to enable transfer between tasks.  It maintains a shared knowledge base at each CNN 
layer, and facilitates transfer between different task-specific CNNs via this shared knowledge.  The 
individual filter layers for each specific task’s CNN model are reconstructed from this shared 
knowledge base, which is adapted over time as the network is trained over multiple tasks.  The 
DF-CNN represents the generalization of the ELLA lifelong learning framework to deep networks. 
 
Experiments showed that the DF-CNN outperformed other approaches (including single-task 
learning, hard-parameter sharing of the lower layers, and progressive neural networks) on 
benchmark recognition tasks in lifelong scenarios.  Moreover, the framework is resistant to 
catastrophic forgetting while still permitting reverse transfer to previously learned models from 
future learning. 
 
For deep reinforcement learning, we investigated the integration of Sobolev training into the 
Distral multi-task framework in an effort to improve transfer and training, explored the use of the 
DF-CNN for deep RL, and developed a hybrid controller that combined locally learned deep RL 
policies together to complete ISR scenarios in the ATE3 simulation environment. 
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2.0 INTRODUCTION 

Recent progress combining deep learning (DL) with reinforcement learning (RL) has achieved 
several groundbreaking results in artificial intelligence, including deep Q-learning that can achieve 
human-level performance in Atari games [Mnih et al., 2015], and AlphaGo [Silver et al., 2016] 
winning against a top-ranked human Go player. However, despite their empirical success, current 
DRL methods require extensive amounts of offline training through repeated interaction with the 
environment (e.g., over a millions hours of parallel compute time for one Atari game [Mnih et al., 
2015]) to learn high performance policies.  In operational environments, such repeated interactions 
to learn an optimal policy are simply impossible—it is feasible to learn on an (imperfect) simulated 
environment, but any bootstrapped policy would still need to be adapted rapidly online when 
deployed in a novel real scenario, making direct usage of DRL methods impractical for all but the 
simplest tasks in real environments. 

Lifelong transfer learning provides a mechanism to avoid this problem by efficiently and rapidly 
reusing previous experience. This process of knowledge transfer is inherent in human and animal 
learning: we rapidly learn novel tasks, often with only a few repetitions, by building upon a lifetime 
of experience and acquired skills. Recent advances in lifelong machine learning [Ruvolo & Eaton, 
2013; Bou Ammar et al., 2014] have enabled this same ability in automated systems, enabling the 
rapid learning of multiple, consecutive tasks in classification, regression, and reinforcement 
learning domains. However, these lifelong learning methods were limited at the start of this project 
to relatively simple models (e.g., linear or logistic regression) and control policies (e.g., 
parameterized Gaussian policies). Consequently, such lifelong learning systems cannot handle 
complex sequential decision making environments. 

The objective of this effort was to develop deep lifelong learning methods that can successfully 
handle sequential decision making in complex dynamic environments, focusing on multi-agent 
intelligence, surveillance, and reconnaissance (ISR) scenarios. By incorporating lifelong 
knowledge transfer in deep reinforcement learning, our approach can acquire deep hierarchical 
knowledge representations over multiple, consecutive tasks. When faced with a novel ISR 
scenario, the resulting deep lifelong RL methods will rapidly learn a policy for the new scenario, 
reusing knowledge at the appropriate level of abstraction to minimize the amount of new data 
needed from the environment.  The developed methods were applied to and evaluated on simulated 
multi-agent scenarios in the ATE3 simulation environment. 
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2.1 Related Work 

 
This section briefly surveys related work on deep multi-task and lifelong learning that we will 
build upon in the remainder of this report. 
 
Deep multi-task and lifelong learning 
 
Previously proposed deep learning work for multi-task and lifelong learning can be classified into 
four categories. Figure 1 shows some representative models of such previous work. These four 
categories include: 
 
Explicit weight sharing. Hard parameter sharing (HPS) is simple but basic idea to share 
knowledge across tasks in deep learning [Caruana 1997; Ranjan et. al. 2015; Huang et. al. 2013; 
Bell & Renals 2015]: explicitly sharing lower layers of the network for feature extraction and 
building higher layers of the network to be task-specific. The explicit sharing of lower layers of 
the network forces them to learn universal features for multiple tasks and task-specific layers learn 
mapping from the universal features to the output of each task. The lowest layers can also be task-
specific to allow the network dealing with various input domain of tasks, but the core idea of 
sharing some layers of the network across tasks is still invariant. 
 
One variant of this method not only used shared lower layers of the network but correlated task-
specific layers by a tensor normal distribution to learn the relations between tasks [Long et. al. 
2017]. Furthermore, there are methods which automatically add new hidden units, split them into 
disjoint groups for different feature spaces, and merge groups of hidden units to encourage transfer 
between tasks [Lu et. al. 2017; Yoon et. al. 2018]. These methods allows more flexible transfer 
between tasks than HPS, but they still explicitly share lower layers across all or partial sets of 
tasks, which only support restricted form of task relationships. 
 
Pipelined transfer. Instead of using tree-structured networks for multi-task and lifelong learning 
by sharing layers, another approach trains task-specific networks which have lateral connection 
from networks of other tasks to utilize learned features for those tasks [Misra et. al. 2016; Gao et. 
al. 2018; Pinto & Gupta 2017; Liu et. al. 2017a; Rusu et. al. 2016]. This architecture enables 
networks to learn and maintain low- and high-level features for their own tasks, so it is more robust 
to handling diverse tasks and catastrophic forgetting than explicit weight sharing. Despite these 
benefit, this approach can also learn restricted forms of task correlation because it reuses only 
features of previous tasks. Moreover, the size of the total network and number of cross-task lateral 
connections increase at most quadratically with the number of tasks. 
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Shared knowledge base. This approach correlates task-specific networks through shared matrices 
or tensors which are serve as a knowledge base. Sharable detectors for face alignment use the 
sparse representation of a shared basis to learn both a universal basis and weights of networks for 
tasks [Liu et. al. 2017b]. Mathematical methods of tensor decomposition is also a possible method 
to define the knowledge base and the relation between knowledge base and weights of task-specific 
networks [Yang & Hospedales 2017].  

Dynamic filters. Dynamic filters method trains one independent neural network which generates 
weights of a network for the task according to the given input [Brabandere et. al. 2016; Ha et. al. 
2017]. This approach is able to learn more abstract relationship between multiple tasks than the 
approach of using a shared knowledge base because of the expressive power of the weight-
generating network. 

Figure 1 - Architectures for Deep Multi-task and Lifelong Learning 

Policy Transfer for Multi-task Deep Reinforcement Learning 

Transfer of knowledge between tasks in the area of deep reinforcement learning can follow the 
approaches introduced in the previous section, which share knowledge of useful features. 
However, it is also possible to constrain the action behavior of task-specific networks to be 
correlated to each other and make these learned policies to be similar. This approach shows 
improvements in performance of the learned policies when tasks are less common in the 
observation space but require similar control, such as driving a car in a desert and a city. 

Policy distillation [Rusu et. al. 2015; Parisotto et. al. 2016] applies the technique of knowledge 
distillation in the area of deep learning to train one network for multiple tasks from supervision of 
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multiple other task networks. This method reduces the size of a neural network and is also able to 
improve the performance of policies encoded in the final network, but these achievements are sub-
optimal with respect to multi-task learning because it is not possible to boost the speed of training 
teacher policies, which must be learned independently.  Also, the teacher policy itself cannot take 
advantage of the knowledge of other tasks for better performance during its training. Therefore, 
Distral (distill and transfer learning) [Teh et. al. 2017] modifies policy distillation into multi-task 
learning by training both a central policy and policies for individual tasks simultaneously. 
 

3.0 METHODS, ASSUMPTIONS, PROCEDURES 

 
Our approach is divided into three methods: a novel architecture for deep convolutional neural 
networks that supports lifelong learning via deconvolutional factorization (DF-CNN), a 
combination of policy distillation via Distral and Sobolev training, and a hybrid controller for 
applying deep learning to ISR agents. 
 

3.1 Sharing Learned Knowledge via Deconvolution Networks 

 
A multi-task and lifelong learning system faces a set of tasks in batch or sequentially, and must 
train a model for each task such as a classifier [Chen and Liu 2016].  For tasks of visual perception, 
a convolutional neural network (CNN) is widely applied to learn useful features. The related work 
described previously are designed to transfer learned features or knowledge across a model for 
each task, but they are general methods which ignore unique characteristics of the convolutional 
layer.  
 
In this section, we propose an approach to lifelong learning using convolutional neural networks.   
Our  proposed  approach,  called  a  deconvolutional  factorized  CNN  (DF-CNN),  seeks  to  
address  the  lifelong  learning problem using deep convolutional networks with a shared 
knowledge base to enable transfer between the tasks (Figure 2).  In the DF-CNN, each learning 
task admits an associated convolutional neural network that is independently trained on labeled  
data  for  that  task. Recall  that  a  CNN  is  composed  of multiple layers of stacked filters,  each 
of which is parameterized.  To facilitate transfer between tasks, our architecture maintains a shared 
latent knowledge base that connects the various layers across the task-specific CNNs.  The filters 
of the CNNs are formed by applying the deconvolution operator (transposed convolution) to the 
learned latent knowledge base, followed by a tensor contraction. Unlike previous methods that 
involve tensor factorization to achieve sparsity, our proposal is naturally sparse by virtue of the 
deconvolution operator. 
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Factorized transfer via deconvolution 

For each task-specific convolutional network with 𝐿𝐿 layers, the  𝑙𝑙-th convolutional layer has the 
filter 𝑊𝑊𝑡𝑡

(𝑙𝑙) of size ℎ × 𝑤𝑤 × 𝑐𝑐𝑖𝑖𝑖𝑖  × 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 where ℎ and 𝑤𝑤 are height and width of the filter, and 𝑐𝑐𝑖𝑖𝑖𝑖 
and 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜are the numbers of input and output channels. A collection of filters of the 𝑙𝑙-th 
convolutional layer of𝑇𝑇 task-specific networks, [𝑊𝑊1

(𝑙𝑙),𝑊𝑊2
(𝑙𝑙), . . . ,𝑊𝑊𝑇𝑇

(𝑙𝑙)], is a 5th-order tensor, so 
the tensor decomposition approach [Liu et. al 2017; Yang & Hospedales 2017] factorizes this 
aggregated filters into a tensor shared across tasks (𝐿𝐿(𝑙𝑙)) and a set of task-specific tensors 
(𝑆𝑆1(𝑙𝑙), . . . , 𝑆𝑆𝑇𝑇(𝑙𝑙)) such as 𝑊𝑊𝑡𝑡

(𝑙𝑙)  =  𝐿𝐿(𝑙𝑙)  𝑆𝑆𝑡𝑡(𝑙𝑙). 

Instead of using a general mathematical tool such as tensor decomposition, we utilize a 
deconvolutional mapping and tensor contraction to factorize the task-specific filter into the 

Figure 2 - Our Deconvolutional Factorized CNN Architecture 

shared knowledge base (𝐿𝐿(𝑙𝑙)), which is a 3rd-order tensor of size ℎ�  × 𝑤𝑤�  × 𝑐̂𝑐. We first deconvolve 
the shared knowledge base into 
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𝐷𝐷𝑡𝑡(𝑙𝑙)  =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐿𝐿(𝑙𝑙);  𝑉𝑉𝑡𝑡(𝑙𝑙))                                                 (1) 
where 𝐷𝐷𝑡𝑡(𝑙𝑙) is a 3rd-order tensor of size ℎ × 𝑤𝑤 × 𝑐𝑐, 𝑉𝑉𝑡𝑡(𝑙𝑙)is the task-dependent deconvolutional 
filter of size 𝑝𝑝 × 𝑝𝑝 × 𝑐̂𝑐 × 𝑐𝑐, and 𝑝𝑝 is the spatial size of the deconvolutional filter. We then apply 
tensor contraction to construct each convolutional filter 𝑊𝑊𝑡𝑡

(𝑙𝑙)based on 𝐷𝐷𝑡𝑡(𝑙𝑙): 
𝑊𝑊𝑡𝑡

(𝑙𝑙)  =  𝐷𝐷𝑡𝑡(𝑙𝑙)  ∙  𝑉𝑉𝑡𝑡(𝑙𝑙)  =  ∑ 𝐷𝐷𝑡𝑡,(⋅,⋅,𝑘𝑘)
(𝑙𝑙)𝑐𝑐

𝑘𝑘=1  𝑈𝑈𝑡𝑡,(𝑘𝑘,⋅,⋅)
(𝑙𝑙)                         (2) 

where 𝑈𝑈𝑡𝑡(𝑙𝑙) is a 3rd-order tensor of size 𝑐𝑐 × 𝑐𝑐𝑖𝑖𝑖𝑖  × 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜, and both subscripts (𝑘𝑘,⋅,⋅) and (⋅,⋅,𝑘𝑘) 
express the elements’ index in the tensor. The tensor contraction formulize the filter as a linear 
combination of the basis vectors 𝐷𝐷𝑡𝑡(𝑙𝑙) by changing the size of channels. 
 
The shared knowledge base is a tensor with small size compared to the filters of task-specific 
convolutional layers, both in terms of the spatial axis (ℎ × 𝑤𝑤) and channel (𝑐𝑐𝑖𝑖𝑖𝑖  × 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜).  Rather 
than applying the same type of operation to expand the knowledge into a large task-specific filter, 
two-staged expansion of the knowledge base by deconvolution and tensor contraction 
distinguishes between the transfer process along the spatial axis of images and along the channels 
of images. 
 
Training the DF-CNN 
 
Our proposed architecture must learn both the shared knowledge bases 𝐿𝐿(𝑙𝑙) and task-specific 
transformation𝑉𝑉𝑡𝑡(𝑙𝑙) and 𝑈𝑈𝑡𝑡(𝑙𝑙) from data of each task in a lifelong learning setting. The architecture 
can be trained end-to-end via gradient-based optimization. 
 
The shared knowledge bases {𝐿𝐿(𝑙𝑙)}𝑙𝑙=1

𝐿𝐿 are randomly initialized prior to training on the first task, 
while task-specific transformations {(𝑉𝑉𝑡𝑡

(𝑙𝑙),𝑈𝑈𝑡𝑡(𝑙𝑙))}𝑙𝑙=1
𝐿𝐿are initialized randomly when the training 

data for the task (labeled 𝑡𝑡) is first provided. While training on the task 𝑇𝑇, the knowledge bases 
and knowledge transformations for the task 𝑇𝑇 are updated according to the observed training 
instances, but transformations of previously observed tasks 𝑡𝑡 < 𝑇𝑇 are held fixed. Since the 
convolutional filters for each task-specific networks are generated dynamically from the shared 
knowledge base, update of the knowledge base can affect the performance of previously trained 
networks, which is known as reverse transfer [Ruvolo & Eaton 2013]. Catastrophic forgetting 
which is severe negative reverse transfer commonly occurs in deep lifelong learning. There are no 
explicit mechanisms designed to prevent catastrophic forgetting (such as [Rusu et. al. 2016]) in 
our architecture, but deconvolutional factorization of the task-specific models’ parameter space 
empirically avoids catastrophic forgetting and exhibits positive reverse transfer.  While we focused 
on developing the DF-CNN for supervised settings, due to its simplicity, it can also operate in 
reinforcement learning settings, which is a focus of our current work. 
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3.2 Sobolev Training for Multi-task Reinforcement Learning 

In addition to developing the DF-CNN method, we also investigated mechanisms for improving 
transfer and learning speed by combining policy distillation in Distral and the use of Sobolev 
training, which incorporates derivatives of the target output into the training of deep networks. 

Distral 

Distral [Teh et. al. 2017] is a framework for multi-task reinforcement learning by enforcing the 
similarity of action policies between tasks on the assumption of tasks having the same state 𝑆𝑆 and 
action 𝐴𝐴 spaces. This method trains both task-specific policies and the central policy. The central 
policy distills common action behaviors from task-specific policies, and the task-specific policies 
maximize reward in tasks via interaction with the associated environment and knowledge 
transferred from other tasks via the central policy. 

Let 𝜋𝜋0 and 𝜋𝜋𝑖𝑖 be the distilled policy (central policy) and task-specific policy for task 𝑖𝑖, respectively. 
If each task 𝑖𝑖 has transition dynamics 𝑝𝑝𝑖𝑖(𝑠𝑠𝑡𝑡+1| 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) and reward functions 𝑅𝑅𝑖𝑖(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡), the Distral 
mechanism optimizes the following objective: 

𝐽𝐽(𝜋𝜋0, {𝜋𝜋𝑖𝑖}𝑖𝑖=1
𝑛𝑛)

=  �𝑝𝑝𝑖𝑖(𝑠𝑠𝑡𝑡+1| 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)
𝑖𝑖

  ��𝛾𝛾𝑡𝑡 𝑅𝑅𝑖𝑖(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)
𝑡𝑡

  −  𝑐𝑐𝐾𝐾𝐿𝐿 𝛾𝛾𝑡𝑡 log 
𝜋𝜋𝑖𝑖(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)
𝜋𝜋0(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

−  𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 𝛾𝛾𝑡𝑡 log 𝜋𝜋𝑖𝑖  (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) � 

where 𝛾𝛾 is discount factor, 𝑐𝑐𝐾𝐾𝐾𝐾 and 𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 are coefficient weighting the Kullback-Leibler (KL) 
divergence between the central and task-specific policies and the entropy of task-specific policies. 
In this objective, KL divergence is minimized to enforce the similarity of policies while entropy 
is maximized to encourage exploration. 

Sobolev training 

Sobolev training [Czarnecki et. al. 2017] assumes that learning of a function 𝑓𝑓 has access to the 
value of derivatives of multiple orders with respect to the input, 𝐷𝐷𝑥𝑥𝑗𝑗  𝑓𝑓(𝑥𝑥𝑖𝑖), as well as the output 
values 𝑓𝑓(𝑥𝑥𝑖𝑖) for training points 𝑥𝑥𝑖𝑖. The typical learning of the function optimizes a neural network 
model according to a set of pairs {(𝑥𝑥𝑖𝑖,𝑓𝑓(𝑥𝑥𝑖𝑖))}𝑖𝑖=1

𝑁𝑁, but the Sobolev training optimizes the model 
according to a set of 𝐾𝐾 + 2 tuples {(𝑥𝑥𝑖𝑖,𝑓𝑓(𝑥𝑥𝑖𝑖),𝐷𝐷𝑋𝑋1 𝑓𝑓(𝑥𝑥𝑖𝑖),⋯ ,𝐷𝐷𝑋𝑋𝐾𝐾  𝑓𝑓(𝑥𝑥𝑖𝑖))}𝑖𝑖=1

𝑁𝑁. The cost function 
of learning in Sobolev spaces sums loss functions of the function 𝑓𝑓 and derivatives. 

(3)
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This method showed empirical improvement in the trained model for both regression tasks and 
distillation of reinforcement learning tasks. It achieved less error than a training mechanism which 
uses only the input-output pairs with relatively small amounts of training data. 

Combining Distral and Sobolev training 

Incorporating Sobolev training into Distral is straightforward because the only change from the 
original Distral method is the addition of new loss terms related to the derivatives into the objective 
function of Distral (Equation 3). Instead of training only action policies for tasks, we applied both 
Distral and Sobolev approaches to actor-critic method for reinforcement learning which learns 
optimal policy and value function simultaneously. For the optimization, we introduced the error 
of the first-order derivative of the policy and value functions into the objective function; the type 
of error function for the value functions and derivatives was the sum-of-squares error (L2 loss). 

In addition to the aforementioned changes for combining Distral and Sobolev training, we 
developed a variant of Distral which applies regularization on task-specific policies at the level of 
the last hidden layers of neural networks rather than the output layers. This alternative is able to 
circumvent the major assumption of Distral method requiring all tasks to have same action spaces. 

3.3 Hierarchical Control of Multiple Agents in Environments with Sparse Reward 

To apply our developed deep learning agents to the ATE3 simulator, which provides a very sparse 
reward signal, we developed a hybrid hierarchical controller for controlling the unmanned aerial 
vehicles (UAVs).  This section describes the hybrid controller for multiple drones using a finite 
state automaton and a deep neural network in Figure 3. 
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Figure 3 - The Hybrid Controller for the ISR UAV Asset,  
Which Consists of a Finite State Automaton and a Deep RL Agent 

Hierarchy of control agents 

Each neural network learns a single policy and functions best when applied to a focused scenario.  
Consequently, it is not currently feasible to train a single deep network to complete the entire ISR 
scenario, which is large and complex. Instead we trained neural networks for multiple local control 
policies, and designed a finite state automaton for abstract and global control to coordinate across 
these policies.  An alternative approach would be to use a hierarchical deep reinforcement learning 
agent, such as a FeUdal network [Vezhnevets et. al. 2017], which we leave to future work. 

The deep neural network controller 

We trained a deep neural network to avoid hostiles in the vicinity of mobile anti-aircraft (AA) in 
the simulation. The observation space of the drone is sparse in comparison with video games, 
which are typical benchmarks of deep reinforcement learning, because the observation space in 
ATE3 consists of the list of observed entities, such as a intel target, a jammer or a mobile AA. 
Because of the characteristics of observation space, we firstly processed the observation of each 
drone to a vector of pre-specified numbers of intel targets, jammers, and mobile AAs. We set a 
positive reward for the case of detecting the intel target and a negative reward for the case of losing 
the drone.  When running the scenarios, even aggregating the rewards across multiple drones could 
not obtain a frequent reward signal, and the deep neural network easily failed to learn optimal 
control. To compensate for this problem, we used intrinsic reward [Pathak et. al. 2017] to adapt to 
the sparse reward from the environment. The intrinsic reward provides a  ‘curiosity’ signal, defined 
by the discrepancy between the environment and the learned model of it, so the intrinsic reward 
encourages the exploration of the agent in the early phase of training. 
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This local controller is trained on the simplified scenario of 10 minute-lengths shown in Figure 4. 
This scenario has only drones and mobile AAs, and each drone receives positive reward when it 
reaches the goal region while getting a negative reward on the loss of the drone. Because of the 
time limit of the scenario, the neural network agent must learn the policy which makes the drone 
move around the hostile and reach the opposite side of the AA region as fast as possible. 
 
 

 
 

Figure 4 - The Simplified Scenario for Training the Neural Network Controller 

 
Finite State Controller 
 
We used a finite state controller to govern the high-level behavior of the drone, which employs 
local policies trained via deep learning to handle different situations.  To maximize the speed of 
exploration at the beginning, the controller sends all drones  in equal directions with a randomly 
chosen distance to move. After the spread of drones, the controller moves them in a counter-
clockwise direction to explore the unobserved area. Whenever the level of fuel of a drone goes 
30% or below, the controller sets home base as the goal location of the drone to refuel it.  Any 
local situations the drone encounters are governed by the trained policies. 
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4.0 RESULTS AND DISCUSSION 

This section presents our evaluation and results on each of the methods described above. 

4.1 Evaluation of DF-CNN on Lifelong Learning Scenarios 

We evaluated our DF-CNN against a variety of alternative methods in lifelong learning scenarios 
using two visual recognition data sets: CIFAR-100 [Krizhevsky & Hinton 2009] and Office-Home 
[Venkateswara et. al. 2017].  Due to its simplicity, we started with evaluating these methods on 
classification scenarios, moving later to deep reinforcement learning. 

Baseline Approaches 

We compared our proposed approach to the alternative methods described in Section 2.1: 

Single-task learning (STL) trains a neural network for each task that is independent from 
networks for all other tasks. This method has a clear disadvantage below transfer methods in 
the few-data or noisy data regime. 

Hard parameter sharing (HPS) [Caruana 1997] shares the lower layers of the network across 
tasks, with separate task-specific layers for the output. A heuristic which we follow is that all 
convolutional layers are shared while all fully-connected layers are task-specific. This model 
is expected to show its strength when tasks share a common set of useful features, but may fail 
when tasks are sufficiently dissimilar. 

Progressive neural networks (ProgNN) [Rusu et. al. 2016] enable each task model to exploit 
learned features of its predecessors. This approach was firstly designed for knowledge transfer 
in reinforcement learning, but it was evaluated in supervised setting in our experiments. 

Experimental Setup 

We built two lifelong learning problems using the CIFAR-100 and Office-Home data sets. For the 
CIFAR-100, we created 10 image classification tasks of ten distinct classes. To follow the 
assumption of limited training data [Chen & Liu 2016], we sampled only 4% of the available 
training data, and split it into training and validation sets in the ratio of 5.6:1 (170 training and 30 
validation instances per task). We used all test images in the CIFAR-100 for the test set of the 
lifelong learning tasks (1,000 instances per task). 



Approved for Public Release; Distribution Unlimited. 
13 

The Office-Home dataset originally has four different domains with the same 65 classes of images, 
and we focused on two of these domains: Product images and Real-World images. The Product 
domain has each object at the center with white background, while the Real-World domain has 
each object in various background. We created 5 image classification tasks from each domain, 
resulting in 10 tasks with 13 distinct classes of images per task. The original dataset has no pre-
specified training/validation/test split, so we randomly split the data into those with a 60% : 10% 
: 30% ratio (approximately 550 training, 90 validation and 250 test instances). 
 
All models were trained end-to-end on only one task at any moment, and the task was switched to 
the next one after every 2,000 (CIFAR-100) and 1,000 (Office-Home) training epochs, regardless 
of the model’s convergence. The optimal hyper-parameters for each approach were determined by 
the accuracy on the validation sets. All baselines and our proposed models have the same 
architectural hyper-parameters, such as the number of convolutional layers and the size of 
convolutional filters.  Note that the regular STL has 3.28M parameters for CIFAR-100 and 26.8M 
parameters for Office-Home, and the regular DF-CNN has 7.96M parameters for CIFAR-100. We 
also evaluated a larger STL, which has 9.35M parameters for CIFAR-100 and 129M parameters 
for Office-Home in total, and a reduced-size DF-CNN with 2.8M parameters for CIFAR-100.  
 
We assessed performance of these models by measuring the following metrics on the held-out test 
set for all tasks: 

● Peak Per-Task Accuracy: The best test accuracy of each task during its training phase. This 
metric focuses on the model’s performance on the currently learned task. 

● Catastrophic Forgetting Ratio: The ratio of a task’s test accuracy after training on 
subsequent tasks to its peak per-task accuracy. This ratio shows how much the model 
maintain its performance on older tasks. 

● Convergence: The number of training epochs for the test accuracy to reach 98% of the peak 
per-task accuracy of the task. This number of epochs shows the effect of knowledge 
transfer from previously learned tasks. 

 
Results 
 
The performance of all approaches is summarized in Figures 5-6 (CIFAR-100) and Figure 7 
(Office-Home). For the CIFAR-100, the test accuracy of each task model over training epochs, 
averaged over 5 trials, is visualized in Figure 6. To explore the effect of learning subsequent tasks 
on previous task models, we repeatedly evaluated performance on the previous task. Significant 
decreases in task performance after switching from the current task indicates catastrophic 
forgetting; increases in performance indicate positive reverse transfer. 
 
We can clearly see that HPS suffers from catastrophic forgetting as the shared layers were adapted 
to new tasks, as shown by the rapid decline in performance once learning on each task finishes 
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(Figure 5(b), 6(a) and 7(b)). Additionally, HPS could not achieve a peak per-task accuracy 
comparable to or better than that of STL consistently, and it converged slowly to its peak per-task 
accuracy. This means that the adaptation of the shared layers of HPS is not guaranteed to have a 
positive effect on training to both current and previous tasks. 

Figure 5 - Performance Metrics of Models on CIFAR-100 Lifelong Learning Tasks, Averaged Over All Tasks 

Figure 6 - Mean Test Accuracy in Lifelong Learning on CIFAR-100. Each Color Corresponds to One Task by 
Presentation Order 

(b) Catastrophic forgetting ratio (c) Speed of convergence(a) Peak per-task accuracy and training time
with 95% confidence intervals

(b) Progressive Neural Net (3.51M parameters total)(a) Hard Parameter Sharing (2.69M parameters total)

(b) DF-CNN (2.8M parameters total)(c) DF-CNN (7.96M parameters total)
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Figure 7 - Performance Metrics of Models on Office-Home Lifelong Learning Tasks, Averaged Over All Tasks 

 
In contrast to HPS, ProgNN was able to preserve its performance on previous tasks after learning 
new tasks by virtue of its design. Lateral connections of ProgNN that reuse previously learned 
features caused improvement of learning speed and test accuracy in a few tasks, such as the 7th -- 
9th tasks of the CIFAR-100 experiment, but the benefit of the lateral connections was marginal in 
comparison with STL. Furthermore, training the ProgNN takes approximately twice as much 
training time as others. 
 
DF-CNN showed significant improvement in peak per-task accuracy over STL, HPS, and ProgNN 
for the CIFAR-100 experiment, and achieved peak per-task accuracy better than STL for the 
Office-Home experiment. Moreover, DF-CNN converged to its peak per-task accuracy more than 
twice as fast as other models. These improvement in peak per-task accuracy and speed of 
convergence show the positive effect of knowledge transfer within the DF-CNN. 
 
Previous task models of DF-CNN deteriorated slightly as it trained on new tasks because of the 
update of the shared knowledge base without consideration to previous tasks. However, the rate of 
performance loss on the earliest task models is much slower than HPS, and DF-CNN recovered its 
performance for those tasks over time. Especially, in the CIFAR-100 experiment, the performance 
of the earliest task models has the most degradation, and the performance on the later tasks 
maintains almost constant post-training accuracy when the shared knowledge base became mature, 
such as for 4th -- 10th tasks. Additionally, during the training on the 8th task of the CIFAR-100 
experiment, we can find positive reverse transfer from new to old tasks, which had not been 
observed in the training of other approaches. 
 
The reduced-size DF-CNN lost performance on the first task catastrophically, because of its 
reduced capacity of the shared knowledge base. Even with the limited capacity of both the shared 
knowledge and task-specific knowledge transformation, the reduced-size DF-CNN still showed 
improvement in accuracy, speed of convergence, and robust retention of performance on previous 
tasks as compared to the baselines. These results support the benefit of knowledge transfer through 
the shared knowledge and deconvolutional mapping. 

(b) Catastrophic forgetting ratio (c) Speed of convergence (a) Peak per-task accuracy and training time 
with 95% confidence intervals 
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4.2 Evaluation of Distral and Sobolev Training 

We evaluated our combination of Distral and Sobolev training using the Doom environments of 
OpenAI Gym. Doom is a challenge for reinforcement learning because the agent must learn visual 
features and the optimal behavior according to the partial observation of the environment. 
Moreover, Doom scenarios have diverse observation and action spaces as well as goals to achieve, 
so transfer of knowledge across tasks by multi-task learning may cause interference. 

The scenarios we used are MyWayHome, Corridor, and DefendTheLine (Figure 8). The first 
scenario, MyWayHome, requires the agent to reach the goal location in a labyrinth. The second 
scenario, Corridor, is similar to the first scenario, but there are hostiles and the agent can shoot a 
weapon to eliminate them. The last scenario, DefendTheLine, is restricted in a single square-
shaped room, and hostiles are in the scenario. Valid actions of each scenario are ‘Move Forward’, 
‘Turn Right’ and ‘Turn Left’ (MyWayHome); ‘Attack’, ‘Move Right’, ‘Move Left’, ‘Move 
Forward’, ‘Turn Right’ and ‘Turn Left’ (Corridor); and ‘Attack’, ‘Turn Right’ and ‘Turn Left’ 
(DefendTheLine). 

Evaluated Approaches 

We compared our proposal to the following methods: 

Single-task learning (STL) trains separate neural network model for each scenario, without 
transfer from other tasks. 

Hard parameter sharing (HPS) shares feature spaces of tasks rather than behavior spaces, in 
contrast to Distral. HPS shows its strength when tasks have common visual features but no 
common action behavior. 

Distral transfers action policies to regulate them to remain similar to each other. Since the scenarios 
described above have different action spaces, we modify these scenarios to have same number of 
possible actions to evaluate the Distral model. The newly introduced actions for the uniform action 
space are processed as ‘No Operation’. 

Results 

Figure 9 shows the performance of STL, HPS, and our proposed method (Distral and Sobolev on 
the last hidden layer) on three Doom environments with their own action spaces. Our method 
boosts the speed of training in the MyWayHome scenario while achieving similar performance to 
STL method in other two scenarios. HPS shows similar positive effects of transfer in the 
MyWayHome and DefendTheLine scenarios, however HPS learns nothing in the Corridor 
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scenario---the reason for this is because these scenarios have similar goal of actions, such as 
eliminating hostiles, but differ in visual features. In contrast, our method is able to maintain the 
performance of STL when no positive transfer from other tasks exists and improve otherwise. 
 

 
Figure 8 - Doom Environments Used to Compare Performance of Reinforcement Learning Methods 

 

 
Figure 9 - Performance on Doom Environments When Each Task Has Its Own Action Space 

 
Figure 10 compares the performance of the multi-task models according to two possible choices 
of task action spaces. Interestingly, Distral with an extended action space learns policies 
outperforming all others, because newly introduced actions provides space for task-specific 
policies to match the central policy while avoiding any harm to the valid actions of each task. On 

(a) Doom MyWayHome scenario (b) Doom Corridor scenario (c) Doom DefendTheLine scenario 

(a) Averaged reward over tasks. 

(b) Reward of MyWayHome. (c) Reward of Corridor. (d) Reward of DefendTheLine. 
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the other hand, our proposed method performs better when no redundant actions exist in the action 
space. This is because regularization on the last hidden layer already gives enough flexibility to 
the task-specific policies, so the addition of redundant actions makes the model less sample 
efficient, in contrast to using Distral only. 

Figure 10 - Multi-task Methods on Doom Environments with Different Action Spaces 

4.3 Results on ISR Scenarios in the ATE3 Simulator 

We evaluated the performance of our approach on the ATE3 simulator developed by Embry-Riddle 
Aeronautical University, controlling a team of unmanned aerial vehicles in simulated intelligence, 
surveillance, and reconnaissance (ISR) scenarios. There are six ISR scenarios in total which have 
three different maps and two sets of hostile agents per map. The smallest map (scenario 1), 6km 
by 6km, has 15 ISR drones and a homebase at the center of the map. The second smallest map 
(scenario 2), 10km by 10km, has 40 ISR drones and a homebase at the location 3km away from 
the center in both longitudinal and latitudinal direction. The largest map (scenario 3), 16km by 
16km, has 40 ISR drones and a homebase at the location 4km away from the center similar to the 
map of scenario 2. One of two hostile groups of each map has fewer mobile anti-aircraft weapons 
(AA) than the other group, and it is named as ‘permissive’ case while the other group is named as 
‘A2AD’ case. 

Statistics of the scenarios and the performance of our agent in these scenarios are summarized in 
Tables 1, 2, and 3. First of all, our agent was able to make more drones return to the homebase 
safely in permissive cases rather than in A2AD cases because of the small number of mobile AAs. 
However, in scenario 3, it lost more drones in permissive cases. We observed that the majority of 
the lost ISR drones in scenario 3 were due to low fuel rather than hostiles, so this loss happened 
because of the fixed criterion (30%) to return to the homebase regardless of the map size.  
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We found one limitation of the learned neural network controller that it prefers moving drones 
toward AA as a byproduct of how it was trained, anticipating that a region of interest lies beyond 
the AA. In the scenario for training the neural network, the goal region lies behind AAs from the 
view of drones, so we conjectured that this behavior of the neural network in ISR scenarios 
originated from the characteristics of training scenario. Using different training scenarios would 
make the neural network learn better policies to avoid these hostile. 
  



Approved for Public Release; Distribution Unlimited. 
20 

Table 1 - Performance of our Hierarchical Agent on ATE3 ISR Scenario 1 

Types Total Number in Map A2AD Scenario Permissive Scenario 

Survived ISR Drones 15 0 8 

Observed Intels 20 11 19 

Observed Jammers 5 4 5 

Table 2 - Performance of our Hierarchical Agent on ATE3 ISR Scenario 2 

Types Total Number in Map A2AD Scenario Permissive Scenario 

Survived ISR Drones 40 0 3 

Observed Intels A 20 8 8 

Observed Intels B 20 7 10 

Observed Jammers 10 4 6 

Table 3 - Performance of our Hierarchical Agent on ATE3 ISR Scenario 3 

Types Total Number in Map A2AD Scenario Permissive Scenario 

Survived ISR Drones 40 21 10 

Observed Intels A 20 6 13 

Observed Intels C 20 2 5 

Observed Intels D 10 0 2 

Observed Jammers 10 3 3 
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5.0 CONCLUSIONS 

 
The development of deep neural networks capable of lifelong learning is still in its infancy, and 
since the start of this project, we have seen increasing interest in the broader literature of this 
problem [Chen and Liu, 2018].  The methods developed under this project, especially the DF-
CNN, represent a huge step toward the development of lifelong deep learning.  Indeed, the DF-
CNN is the first deep neural network architecture capable of supporting scalable learning to 
numerous tasks over its lifetime.  Its behavior during experimentation is characteristic of lifelong 
learning, adapting knowledge over time, recovering learning performance on the earliest tasks, and 
avoiding catastrophic forgetting.  Future work is needed to develop further the idea of lifelong 
deep learning, with our results being early indications of its feasibility and promise. 
 
Our experiments also reveal the limitations of deep reinforcement learning, requiring numerous 
interactions to learn scenarios.  Training first in simulation and then deploying to the real world 
would reduce the burden of live training, but methods that exploit such simulation-to-real transfer 
need further development.  In the longer term, to solve problems at scale with rapid live learning, 
we need improved lifelong learning systems that move beyond current reinforcement learning.  
Learning hierarchical composable knowledge via lifelong learning is potentially one solution.  
Such composable knowledge could correspond to skills, which could then be dynamically 
integrated together live via planning algorithms to solve larger problems.  Both these skills and the 
ability to plan with them could be refined over time, with knowledge reused across multiple 
scenarios. Lifelong skill learning and planning could potentially solve many of the application 
issues experienced in this project, and would represent a feasible next step toward developing 
lifelong learning systems that are capable of operating live. 
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7.0 LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 

CNN 
DF-CNN 
Distral 
FSA 
HPS 
ProgNN 
RL 

Convolutional Neural Network 
Deconvolutional Factorized CNN 
Distillation and Transfer Learning 
Finite State Automaton 
Hard Parameter Sharing 
Progressive Neural Network 
Reinforcement Learning 
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